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Abstract 

It is shown that  the least  order  dynamic  output 
feedback which stabilizes a given  linear time  invariant 
plant  can be found  via a semi-definite program. 
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1 Introduction 

Consider the  linear  time  invariant  (LTI)  plant E, 

E :  x = A x + B u ,  (1.1) 
y = c x ,  (1.2) 

where A E R"'", B E R"'", and C E Rpx". Let k 5 
n;  represent the class of k-th  order  stabilizing  linear 
controllers  for C by X:, having the general form, 

E: : i = A K Z +  BKY,  (1.3) 
u = C K Z + D K Y ;  (1.4) 

AK E R k x k .  

Two  open  problems in  control  theory  are  stated as fol- 
lows: 

Static  Output Feedback (SQF) Problem: 
Find  polynomial-time verifiable necessary and 
sufficient conditions  on the  triplet ( A ,  B ,  C )  such 
that E: is nonempty. 

Least  Order Dynamic  Output Feedback 
(LODOF)  Problem: Find  a polynomial time 
algorithm  to  determine  the  least k for which Et  
is n0nempty.l 

Note that  the SOF is a special case of the  LODOF: 
if the least k in the  LODOF  problem  turns  out  to be 
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Moreover, find the corresponding k-th order controller. 

zero, the corresponding SOF  has been  solved.  In fact, 
the two problems  are  equivalent via  an  embedding pro- 
cedure. We shall refer to  both  SOF  and  LODOF as the 
OFP  (Output Feedback Problem). 

The  OFP  has received considerable  attention  in sys- 
tems  and control community over the  last  thirty years 

[27]; also refer to  the surveys [a], [26]. In a recent sur- 
vey on the  state of systems  and  control,  the OFP has 
been identified as an  important  open  problem  in con- 
trol  theory [3]. The purpose of the present paper is 
to  solve the  OFP using the  machinery of semi-definite 
programming  (SDP).2 

The  notation used is mostly  standard.  Given two sets 
5'1 and 5 '2 ,  Sl\S, denotes  their difference. The n- 
dimensional  Euclidean  space is denoted by R". The 
space of n x rn real matrices is denoted by RnXm; S" 
is the of space of real n x n symmetric  matrices,  and 
ST and ST, are  its  positive  semi-definite  and  positive 
definite  subsets. AT and A-l are  the  transpose  and  the 
inverse of the  matrix A,  respectively,  when the  latter 
exists. A > B and A 2 B designate the positive def- 
initeness  and positive  semi-definiteness of A - B. We 
shall  also use a notion of convergence for matrices. For 
this  purpose we have in mind  the  metric  (dist) on S" 
induced by the Frobenius norm. 

Most of the background material  and proofs are  omit- 
ted for brevity. 

The rest of the  paper is devoted to provide  a  detailed 
outline of the proof of the following statement. 

P I ,  ~51, [TI, ~ 1 1 ,   ~ 3 1 ,   ~ 4 1 ,   ~ 5 1 ,   ~ 6 1 ,   ~ 2 1 ,   ~ 3 1 ,   ~ 5 1 ,  

Theorem 1.1 The OFP can be solved as an SDP.3 

The  idea of the proof is as follows: Starting from  the 
formulation of the OFP in terms of t,he Lyapunov  in- 
equality  (leading  directly  to  a  Bilinear  Matrix  Inequal- 
ity  (BMI)),  elimination  lemma  and  matrix  dilation  are 

21t is important to stress that the proposed solution  method 
is based on convex optimization  algorithms and is by nature, 
approximate. 

Provided that we are given a threshold for determining when 
an eigenvalue is declared to  be zero. 
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Figure 1: The proof of Theorem 1.1 

used to  obtain a  rank  minimization  problem  (RMP).  It 
is then  shown that  an  RMP whose feasible set enjoys 
a  hyperlattice  structure (defined shortly) is solvable as 
an  SDP.  The rest of the  paper  consists of a  sequence 
of propositions  and  lemmas which  show that  the fea- 
sible  set of the  RMP which  arise from  the  OFP can 
be  scaled  such that  it is asymptotically  a  hyperlattice 
(for  this  purpose we introduce  ehyperlattices).  Then 
using  a continuity  argument,  it is argued that given  a 
threshold  which is used to declare  a  number as zero, 
the  OFP  can  be solved as a SDP.  The road map of the 
proof is shown in Figure 1. 

2  Preliminaries 

In this  section we state few definitions  and  known  facts 
pertaining  the  result  presented in the  paper. 

For A,  B E S;, define the  matrix intervals 

A(A, B )  := {X : 0 5 X 5 A ,  0 5 X 5 B } ,  

and 

Z(A, B )  := { X  : X 5 A,  ,Y 5 B } .  

Definition  2.1 ([17]) Let r be a nonempty subset of 
ST. If for all A,  B E r, A("l, B )  n I' is  nonempty, r is 
called a hyperlattice. 

Definition  2.2 ([17]) Let I' be a nonempty subset of 
ST. If there  exists a matnx X such  that X 5 Y for all  
I' E I?, then X is the (unique) least element of r. 

Proof: Let, S be t.he least element of r and ;is- 
sume  that there exists F' E r such that rank ( Y )  < 
rank ( X ) ,  i.e.,  there  exists  an  index j such that 
0 = Xj(Y) < Xj(,U). However, X 5 Y and  thus 
X j ( X )  5 X j ( I ' ) ,  which  is a  contradiction. 

3 Proof  of  Theorem 1.1 

Let  us first introduce  a  convention.  Assume  that we are 
given  a  threshold A T ,  such that if a  number X < AT,  
its value is declared to be zero.  Given a parameter- 
ized family of R x n symmetric  positive semi-definite 
matrices {Ak}k>l ,  we write 

r a n k & - m  as k - + m  

whenever n - m eigenvalues of Ak eventually  fall below 
the  threshold A T ,  i.e.,  there  exists ko such that for all 
k 2 ko, rank  At is declared to be m. 

3.1 RMP with  a  hyperlattice  feasible  set 
In  subsequent  sections we assume  that  the feasible sets 
of the  SDPs or the  RMPs  are  nonempty;  note  that  the 
feasibility of an  SDP, or an  RMP whose feasible set is 
defined by a  set of LMIs,  can  be  checked  via  the  interior 
point  methods. 

Lemma 3.1 Let r 5 ST be nonempty and compact. If 
I' is a hyperlattice then, 

X *  := arg  min Trace X ,  
x u  

is of minimal rank in r. 

Definition  3.1 Let r be a nonempty subset of S:. 
If for a given E > 0, and  all A,  B E r, there  exists 
2 E Z(A,  B )  such that dis t (2 ,  r) 5 E, is called an 
c-hyperlattice. 

Proposition  3.2 Let be a family of nonempty com- 
pact c-hyperlattices  (parameterized b y  E). For all E > 0, 
let 

T* := min rank X ,  
x m ,  

and 
X(€) := arg  min Trace X .  

xer.  
Then, 

rank X ( € )  - T* as E - 0. 

Proposition  2.1 Let r be a nonempty subset of SF. 
If r admits a least element,  that least element has a 
minimal rank in r. 

p. 2 



3.2 The OFP to RMP reduction 

Lemma 3.3 ([6], [12]) There  exists 7 > 0 such  that 
f o r  all y 2 7 ,  the OFP can be written as the  following 
optimization  problem, 

min rank [ I ] p ,  Q 
P I  

P I  

AP + PAT < yBBT,  (3.7) 
AT& + Q A  < yCTC, (3.8) 

Corollary 3.4 For  all p > 0, there  exists 7 > 0 such 
that for all y 2 7 ,  the OFP can be written as the fol- 
lowing optimization  problem, 

min rank [ p .  I I ] 
P,  Q 
AP  +,PAT < yBBT,  (3.10) 
AT& + &A < yCTC, (3.11) 

(3.12) 

P 2 PI. (3.13) 

Corollary 3.5 For  all p > 0, there  exists 7 > 0 such 
that for  all y1 2 py, y2 y/p, the  OFP can be written 
as the. following  optimization  problem, 

min rank [ I ] P I  
Q 

(3.14) 

AP+  PA^ < Y ~ B B ~ ,  (3.15) 
A'Q + QA < y2cTc, (3.16) 

P I  
[ I  Q ] " '  (3.17) 

P 2 PI. (3.18) 

Proposition  3.6 Given  the  matrices P and Q as so- 
lutions  to  the  optimization  problem (3.14)-(3.18), the 
corresponding  stabilizing static or least order dynamic 
output feedback controllers  can be found using  an LMI.  

3.3 Representation,  scaling,  and  approximation 
In this  and  the  next few subsections, we make few ob- 
servations which are  related  to  the final proof of Theo- 
rem 1.1. These  results  are  concerned  about  establish- 
ing that  the feasible set of the RMP which corresponds 
to  the OFP approaches  a  hyperlattice as p "-+ 03 in 
(3.14)-(3.18) (as  long as it  remains  feasible). 

Define the following sets: 

x+ := { X  E P n  :-x- = [ P I  ] 2 0 )  
I &  

E ,  := { X  E S 2 "  : x  = [ ; ] :'P L P I ,  Q 2 0) 

x+,,  := { X  E S 2 "  : x  = [; ;] 2 0 9 P 2 P I )  

For n = 1, X,, and E+,, are  depicted in Figure 2. 

Proposition 3.7 

E ,  + E+?,, as p - 0 3 .  (3.19) 

Proposition 3.8 For all p > 0, there  'exists y > 0 
such  that for  all y1 2 p y ,  y2 2 y/p, the  OFP  is equiv- 
alent to, 

min rank X (3.20) 

X - LapXLzp + R, > 0,  (3.21) 
X 

x E x+, ,  (3.22) 

where, 

R~ = ( Y Y ~ ( ( U I  - A ) - ~ B B ~ ( & I  - A ) ~  
R' = R3 = 0 
R4 = Py?(,BI - A)"'CTC(,BI - AT)-' 
R, = 2Ro - J + LapJLzp. 

Let the  linear  map F, : S2" - S?" represent  the as- 
signment, 

F,(x) := L ~ ~ x L ~ ~  - R, (3.23) 

where 71 = p y  and 72 = y / p .  

p. 3 



Propos i t i on  3.10 For d l  ,I* E 7-10 and w ,  

F, ( S )  E 'Ho.  

Let E : "R - SF+ represent  a  strict  monotonically 
increasing (SMI) matrix  function,  i.e., 

€1 < €2 + E ( E I )  < E(62).  

Corol lary 3.11 For all p > 0 and SMI matrix  func- 
tion E ,  there  exist y > 0 and €0 > 0 ,  such  that for all 
0 < E 5 E O ,  y1 2 py, and y2 2 y/p, the OFP can be 
written as the following optimization  problem, 

minrank  X 
X .  

x - LapxL:p + % , e  2 0, 
x E X+,,, 

.where 
RW,, = Rw - E ( € ) .  

Given E , w ,  and E ,  analogous to (3.23) let  us define 
FU7€ : S2" + S2" to represent the  assignment, 

FW,c(X) := LapXLZp - R,,,, (3.24) 

where 'y1 = py and 7 2  = y/p. 

Proposition 3.12 For all X E 'Ho, FW,€ E X o .  More- 
over, for  all p > 0, X E X+,,, y > 0, and 6 > 0, 

F,,,(X) - SF+ as cr,P -+ co 

Proof: Note that Fw, , (X)  = F,(X) + E ( € )  and 
F,(X) -+ ST a3 a l p  + 00. W 

We now enforce,  without loss of generality,  the follow- 
ing relationships  among  the  parameters p ,  C Y ,  and p ,  
and  adopt  a  particular  form for the  matrix  function E ,  

moreover,  since in principle, we would like c l ,  c2  - 0, 
we let 

1 1 
€ 1  = -, and €2 = -. 

P P4 

With  these  relationships enforced we defined L,, R, 
and Fp to  stand for Lap ,  R,,c and F,,,, re~pectively.~ 

4The  reader might wonder why we chose these particular func- 
tional  dependencies among  the  parameters.  The final form of the 
semi-definite program which we end  up solving will shed some 
light on the  rationale for  these  selections. 

Proposition 3.13 For d l  p > 0 and X E 3 1 0 ,  F, E 
7-10. Moreover, as 1.1 - 03, for  all -Y E I f + , , ,  F,,(X) - 
S?. 

Corollary 3.14 For all X E 'H,, F, (X)  - SF. 

Proof: Recall that 'H, - X,,+ as p + 00. H 

3.4 The E-hyperlattice structure 

Lemma 3.15 For all p > 0 ,  let 

I?, := { X  E X+, ,  : X - L,XLF + R, 2 0}, (3.25) 

n + k* := min  rank X ,  
x w , ,  

and 
X ( p )  := arg  min Trace X .  xm,, 

Then 

r a n k  X ( p )  + n + k* as p + 03. 

3.5 Back to the original representation 
The procedure for solving the OFP using  the SDP ap- 
proach  implicitly  described  above  suggests  the follow- 
ing algorithm: 

1. Input  the  triplet A E RnXn,  B E Rnxm, and 
c E RPX". 

2. Choose the  parameters p and y. 

3. Set CY = JT;,  P = p 2 ,  and €1 = 1 and €2 = 5.  
4.  Solve the following SDP: 

P 

min Trace P + Q (3.26) 
P+Q 

AP + PAT 5 pyBBT 

-?(a1 - AT - A + -AAT),  (3.27) 
1 

2 CY 

A ~ Q + Q A ~  -C Y T  c 
I" 

- T ( P I  - A - AT + -ATA),  (3.28) €2 1 
P [: ; ] 2 0 .  (3.29) 

P 2 p 1 .  (3.30) 

5. Find  the  rank of the  solution X". The order of 
the least order  dynamic  output feedback which 
stabilizes  the  plant is ( r ank  X * )  - n. 

6. Extract  the  matrices P and Q from  the  solution 

X * .  Construct  the  matrix = P *  1 * * 1 such 
L 1 



Proposition 3.16 The solution of the SDP (3.27)- 
(3.30) depends continuously on p .  

Corollary 3.17 For all p > 0, let 

I?, := { X  E Z+,, : X - L,XL: + R, 2 0}, (3.31) 

n + k* := min rank ,Y, 
x u p  

and 
X ( p )  := arg  min Trace X .  

Let > 0 be such that whenever X i ( X ( p ) )  _< AT,  its 
value is declared t o  be zero. Then  there exists p o  > 0 

x u , ,  

such that for  d l  p 2 po , 

rank X ( p )  = n + k * .  

Proof: X ( p )  depends  continuously  on p and so does 
its  set of eigenvalues.  Since rank X ( p )  ”+ n+k* ,  given 
the  threshold A T ,  there  exists po  > 0 such that for all 
p 2 p o ,  n - k* eigenvalues of X ( p )  will be less than AT 
for all p 2 po  

Note that in practice XT does  not need to be  chosen 
apriori.  An  obvious  rule of thumb for its use is to pro- 
ceed solving  the OFP as the SDP (3.27)-(3.30) for some 
large  value of p and  an  appropriate value of y ,  and  then 
by inspection choose XT and  determine  the rank.‘ 

The eigenvalues of the solution  using  the SDP 
formulation  described  above were found to  be, 

X1 = 1.1327e - 13, X?  = 8.5827e - 04 , ,  X3 = 0.7460, 
X4 = 1.1806, X5 = 1.00OOe + 03, X6 = 1.0011e + 03, 

X7 = 1.9130e + 03, X 8  = 2.7384e + 03 

By inspection we declare  the  rank of the  matrix X 
to be 6;  thus  a second order  controller is in fact 
the  least  order  dynamic  output feedback which 
stabilizes  this  plant. 

2. The  data of our second example  is  as follows 

A = [  -l.oo50 0 I..=[ ; ] , c = P  1 1  
1 .0000 1.0050 

The eigenvalues of the  solution were found to  be, 

X1 = 2.8126e - 07, X2 = 2.8102e - 04, 
X3 = 1.0000e + 0, X4 = 5.7876e + 04. 

Again, by inspection, we declare  the  rank of the 
matrix X *  to be  two;  thus  a  static  output feed- 
back  can in fact  stabilize  this  plant. 

3. The  data of our third  example  is, 

-0.0366 0.0271 0.0188 -0.4555 
0.0482 -1.0100 0.0024 -4.0208 
0.1002 0.3681 -0.7070 1.4200 ’ 

A =  [ 
0 0 1 .0000 0 I 

r 0.4422 0.1761 1 
3.5446 -7.5922 

, = [ 3 . -5.5200 4.4900 

4 Examples 
The eigenvalues of the  solution were found  to  be, 

The following examples were solved  using the LMI- 
tool; in order  to  avoid  numerical  problems, we avoided 
choosing p to  be  too  large. 

1. The  data for our first example is as follows: 

0 0 1 0  0 

A = [ ; l  -1 0 1 0 0 1  0 o ] l  0 . = [ ; I 1  
c = [ o  1 0  0 1 .  

It is known that  a second  order  controller is a 
minimum  order  dynamic  output feedback which 
stabilizes  this  plant. 

We provide a result  pertaining  to  the apriori selection of A T  
in the  future work. 

X 1  = 7.3784e - 14, X2 = 3.2675e - 09, X3 = 5.4909e - 04, 
X4 = 3.500e - 3, X5 = 1.0000e + 03, X6 = 1.0000e + 03, 

X7 = 1.0000e + 03, X 8  = 1.7677e + 03. 

By inspection, we declare  the  rank of the  solution 
to be four,  and  thus  conclude  that a static  output 
feedback  can stabilize  this  plant.6 

5 Conclusion 

It is shown that  the  solution of the  least  order  dynamic 
output feedback  synthesis  can  be  obtained  via a semi- 
definite  program. 

‘Note that for these  examples the  corresponding stabilizing 
controller can  be found via an LMI. 
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